Course Type	Course Code		Name of Course	L	T	Р	Credit
DP	NCSC518	Data Analytics Lab		0	0	3	1.5

Course Objective

This course is intended to provide the students the practical knowledge of implementing the algorithms and/or techniques that they have learned and understand from their theoretical study.

Learning Outcomes

Students will be learning building project on Big-data Analytics using Python and/or R apart from getting concepts on Hadoop and MapReduce.

Unit No.	Topics to be Covered	Practical Hours	Learning Outcome		
1	Descriptive Statistics and statistical measures for real world data sets.	6	Understanding the different statistical measures and their need.		
2	Data Visualization techniques	6	Understanding graphical representation of data set with corresponding statistics.		
3	Bayes and Naïve Bayes techniques.	3	Understanding the role of probabilistic techniques in data analytics.		
4	Linear and Non-linear regression techniques.	3	Understanding classification of linearly and non-linearly separable data points.		
5	Data Classification Algorithms using Neural Network algorithms	6	Understanding data classifications by the use of neural networks.		
6	Linear Discriminant Analysis and Quadratic Discriminant Analysis.	3	Understanding different types of discriminant algorithms and their role.		

7	Implementation of SVM, Ensemble methods, Unsupervised learning Algorithms, Clustering and Association rule mining.	9	Understanding the role of these algorithms and their use in data analytics.
8	Scalable Computing: Hadoop and MapReduce.	6	Understanding the concept of scalable computing in platform of Hadoop and MapReduce.
Total		42	

Reference Books:

- 1. Data Analytics- Anil Maheswari, McGraw-Hill.
- 2. Big Data Analytics- SeemaAchary, Wiley.
- 3. Machine Learning with Big Data- Kareem Alkaseer
- 4. Data Analytics with Hadoop and MapReduce- Benjamin Bengfort and Jenny Kim, O'Relly.